I.7 Classical channels and channel codes

Communication system:

\[m \xrightarrow{\text{encoder}} x^n \xrightarrow{\text{noisy channel}} y^n \xrightarrow{\text{decoder}} \hat{m} \]

In the data compression scenario, there was no noise, i.e., \(y^n = x^n \), and the goal of the encoder/compressor was to remove redundancy from the message to compress it as much as possible. When there is a noisy transmission channel, then the encoder should add sufficient redundancy such that decoding after noise is possible (with small error probability).

We model the noise as follows:

Definition: A discrete channel between finite sets \(X \) and \(Y \) is described by a linear map \(T : \mathbb{R}^{|X|} \to \mathbb{R}^{|Y|} \) that maps probability distributions on \(X \) to probability distributions on \(Y \); i.e., the characterising matrix \(T \in \mathbb{R}^{|Y| \times |X|} \) is a stochastic matrix, i.e., satisfies \(\sum_{y \in Y} T_{yx} = 1 \) \(\forall x \in X \).

For any \(x \in X \) and \(y \in Y \), \(T_{yx} =: p(y|x) \) is interpreted as the probability of \(y \) appearing at the channel output if the input was \(x \). Thus, \(p(y|x) \) are conditional probabilities.

\[\text{input} \quad x \xrightarrow{T} y \in Y \quad \text{output} \]
The "discrete memoryless extension" to a map of the discrete channel T is the discrete channel $T^\otimes n : R_+^n \rightarrow R_+^n$, where $(T^\otimes n)_{yx} = \prod_{i=1}^n T_{y_i|x_i} \quad \text{for } x = (x_1, \ldots, x_n) \in \chi^n \text{ and } y = (y_1, \ldots, y_n) \in \gamma^n$.

Thus, the transition probabilities do not depend on previous inputs or outputs.

Unless stated otherwise, by "channel" we will mean a discrete channel and its discrete memoryless extension to n uses.

Examples:

- **Binary symmetric channel**: $T = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$, $p \in [0,1]$

 - Input distribution when sending 0 is $\vec{\pi} = (\frac{1}{2})$
 - Output distribution $\vec{q} = T\vec{\pi} = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(1-p) \\ \frac{1}{2}(1-p) \end{pmatrix}$

 - Input distribution $\vec{q} = (\frac{1}{4})$ leads to output distribution $\vec{q} = T\vec{q} = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4}(1-p) + \frac{1}{4}p \\ \frac{1}{4}(1-p) + \frac{1}{4}p \end{pmatrix}$

- **Binary erasure channel**: $T = \begin{pmatrix} 1-p & 0 \\ p & 1-p \end{pmatrix}$, $p \in [0,1]$

 - Input 0 is lost with probability p.

Remarks: The linearity requirement on $T : R_+^1 \rightarrow R_+^1$ can be justified as follows:

For any probability distribution π on X and any $x \in \chi$, the encoder's uncertainty about which distribution the input follows, it should hold that $T(\lambda \pi + (1-\lambda)x) = \lambda T(\pi) + (1-\lambda) T(x)$, since the channel should not be affected by the ignorance λ. Then, when embedding the set of probability distributions into a linear space R_+^1, the map T has a linear extension.
We want to send information (messages) using the channel many times:

Definition: A "(M,n) code" (with M, n ∈ M) for a channel \(T : \mathbb{R}_+^{1 \times 1} \rightarrow \mathbb{R}_+^{1 \times 1} \)
consists of:

(i) an index set \(M \) ("set of messages") with \(|M| = M \),
(ii) an encoding function \(x : M \rightarrow \mathbb{X}^n \),
(iii) a decoding function \(g : \mathbb{Y}^n \rightarrow M \).

\(n \) is called the "blocklength" of the code, \(x(m) \) for \(m \in M \) are the "codewords", and \(x(M) \) is the "codebook".

Example: repetition code (e.g., for the binary symmetric channel)

\[M = 2, \quad M = \{0, 1\}, \quad n = 3 \]

\[x : 0 \rightarrow 000, \quad 1 \rightarrow 111 \]

\[g : 000, 001, 010, 011, 100, 110, 101, 111 \rightarrow 0 \quad \text{decoding by} \]

\[111, 110, 101, 101, 011 \rightarrow 1 \] "majority vote"

Error: For a \((M,n)\) code for channel \(T \):

- **error probability** for message \(m \in M \):
 \[
 \lambda_m := \text{prob} [g(Y^n) \neq m \mid X^n = x(m)] = \sum_{y : g(y) \neq m} p(y \mid x(m))
 \]

 where \(p(y \mid x) = \prod_{i=1}^{n} p(y_i \mid x_i) \).

 to channel \(T \).

- **maximal error probability:** \(\lambda_m := \max_{m \in M} \lambda_m \)

- **average error probability:** \(\lambda_2 := \frac{1}{M} \sum_{m \in M} \lambda_m \)